Need help from an expert?
The world’s top online tutoring provider trusted by students, parents, and schools globally.
To integrate (x+1)/(x^2+1), use substitution with u = x^2 + 1.
To integrate (x+1)/(x^2+1), use substitution with u = x^2 + 1. Then du/dx = 2x, so dx = du/2x. Substituting these into the integral gives:
∫(x+1)/(x^2+1) dx = ∫(x+1)/(u) (du/2x)
= 1/2 ∫(1 + u^-1) du
= 1/2 (u + ln|u|) + C
= 1/2 (x^2 + 1 + ln|x^2 + 1|) + C
Therefore, the integral of (x+1)/(x^2+1) is 1/2 (x^2 + 1 + ln|x^2 + 1|) + C.
Study and Practice for Free
Trusted by 100,000+ Students Worldwide
Achieve Top Grades in your Exams with our Free Resources.
Practice Questions, Study Notes, and Past Exam Papers for all Subjects!
The world’s top online tutoring provider trusted by students, parents, and schools globally.