TutorChase logo
AP Calculus AB/BC Study Notes

1.1.3 Instantaneous Rate of Change

Understanding the instantaneous rate of change via limits is essential for analyzing movements or changes that occur precisely at a given moment. This concept forms the backbone of calculus, offering a mathematical lens to study changes that happen instantaneously. By utilizing limits, calculus transcends the average rate of change, providing insights into the exact rate at which a variable changes at any given point.

Instantaneous Rate of Change Graph

Image courtesy of Geeks for Geeks

The Concept of Instantaneous Rate of Change

The instantaneous rate of change at a point on a function is akin to the concept of speed at an instant for a moving object. It is the rate at which a function's output value changes with respect to a change in the input value, precisely at a specific point.

Definition: The instantaneous rate of change of a function f(x)f(x) at a point cc is defined as:

limh0f(c+h)f(c)h\lim_{h \to 0} \dfrac{f(c+h) - f(c)}{h}

This limit, when exists, represents the slope of the tangent line to the curve y=f(x)y=f(x) at the point (c,f(c))(c, f(c)).

Understanding Through Examples

Let's delve into examples to thoroughly grasp the concept and computational methods of determining the instantaneous rate of change.

Example 1: Linear Function

Consider the linear function f(x)=2x+3f(x) = 2x + 3. Find the instantaneous rate of change at x=1x = 1.

  • Solution:
$\begin{aligned} \lim{h \to 0} \frac{f(1+h) - f(1)}{h} &= \lim{h \to 0} \frac{(2(1+h) + 3) - (2\cdot1 + 3)}{h} \\ &= \lim{h \to 0} \frac{2 + 2h + 3 - 5}{h} \\ &= \lim{h \to 0} \frac{2h}{h} \\ &= \lim_{h \to 0} 2 \\ &= 2 \end{aligned}<p></p><p>Theinstantaneousrateofchangeof<p></p><p>The instantaneous rate of change of f(x)at at x = 1is2,whichisconsistentacrossallpointsforalinearfunction,indicatingaconstantslope.</p><p></p><h3><strong>Example2:QuadraticFunction</strong></h3><p>Considerthefunction is 2, which is consistent across all points for a linear function, indicating a constant slope.</p><p></p><h3><strong>Example 2: Quadratic Function</strong></h3><p>Consider the function f(x) = x^2 - 4x + 4.Calculatetheinstantaneousrateofchangeat. Calculate the instantaneous rate of change at x = 2.</p><p></p><ul><li><strong>Solution</strong>:</li></ul><p></p>.</p><p></p><ul><li><strong>Solution</strong>:</li></ul><p></p>\begin{aligned} \lim{h \to 0} \frac{f(2+h) - f(2)}{h} &= \lim{h \to 0} \frac{((2+h)^2 - 4(2+h) + 4) - (2^2 - 4\cdot2 + 4)}{h} \\ &= \lim{h \to 0} \frac{(4 + 4h + h^2 - 8 - 4h + 4) - 0}{h} \\ &= \lim{h \to 0} \frac{4h + h^2}{h} \\ &= \lim_{h \to 0} (4 + h) \\ &= 4 \end{aligned}<p></p><p>Here,theinstantaneousrateofchangeat<p></p><p>Here, the instantaneous rate of change at x = 2is4,illustratinghowtheslopeofthetangentlinetothecurveatthatpointcanbedeterminedusinglimits.</p><p></p><h3><strong>Example3:CubicFunction</strong></h3><p>Findtheinstantaneousrateofchangeof is 4, illustrating how the slope of the tangent line to the curve at that point can be determined using limits.</p><p></p><h3><strong>Example 3: Cubic Function</strong></h3><p>Find the instantaneous rate of change of f(x) = x^3at at x = 1.</p><ul><li><strong>Solution</strong>:</li></ul><p></p>.</p><ul><li><strong>Solution</strong>:</li></ul><p></p>\begin{aligned} \lim{h \to 0} \frac{f(1+h) - f(1)}{h} &= \lim{h \to 0} \frac{(1+h)^3 - 1^3}{h} \\ &= \lim{h \to 0} \frac{1 + 3h + 3h^2 + h^3 - 1}{h} \\ &= \lim{h \to 0} \frac{3h + 3h^2 + h^3}{h} \\ &= \lim_{h \to 0} (3 + 3h + h^2) \\ &= 3 \end{aligned}<p></p><p>For<p></p><p>For f(x) = x^3at at x = 1,theinstantaneousrateofchangeis3,whichvariesatdifferentpointsonthecurve,reflectingthechangingslopeofthetangentaswemovealongthefunction.</p><h2id="applyingtheconcepttorealworldproblems"><strong>ApplyingtheConcepttoRealWorldProblems</strong></h2><p>Consideraballthrownupwardswithitsheightabovethegroundgivenbythefunction, the instantaneous rate of change is 3, which varies at different points on the curve, reflecting the changing slope of the tangent as we move along the function.</p><h2 id="applying-the-concept-to-real-world-problems"><strong>Applying the Concept to Real-World Problems</strong></h2><p>Consider a ball thrown upwards with its height above the ground given by the function s(t) = -16t^2 + 64t,where, where sistheheightinfeet,and is the height in feet, and tisthetimeinseconds.Calculatetheinstantaneousvelocityoftheballat is the time in seconds. Calculate the instantaneous velocity of the ball at t = 2seconds.</p><h3><strong>RealWorldExample:InstantaneousVelocity</strong></h3><p>Theinstantaneousvelocityofanobjectatagiventimeistheinstantaneousrateofchangeofitspositionwithrespecttotime.</p><ul><li><strong>Given</strong>: seconds.</p><h3><strong>Real-World Example: Instantaneous Velocity</strong></h3><p>The instantaneous velocity of an object at a given time is the instantaneous rate of change of its position with respect to time.</p><ul><li><strong>Given</strong>: s(t) = -16t^2 + 64t</li><li><strong>Find</strong>:Instantaneousvelocityat</li><li><strong>Find</strong>: Instantaneous velocity at t = 2seconds.</li><li><strong>Solution</strong>:</li></ul><p></p> seconds.</li><li><strong>Solution</strong>:</li></ul><p></p>\begin{aligned} v(t) &= \lim{h \to 0} \frac{s(2+h) - s(2)}{h} \\ &= \lim{h \to 0} \frac{-16(2+h)^2 + 64(2+h) - (-16\cdot2^2 + 64\cdot2)}{h} \\ &= \lim{h \to 0} \frac{-16(4 + 4h + h^2) + 64 + 64h - (-64 + 128)}{h} \\ &= \lim{h \to 0} \frac{-64 - 64h - 16h^2 + 64 + 64h - 64 + 128}{h} \\ &= \lim{h \to 0} \frac{-16h^2}{h} \\ &= \lim{h \to 0} -16h \\ &= 0 \end{aligned}<p></p><p>At<p></p><p>At t = 2seconds,theinstantaneousvelocityoftheballis0.Thismeansthatatthisexactmoment,theballhasreacheditsmaximumheightanditsvelocityismomentarilyzerobeforeitstartsdescending.</p><p></p><h3><strong>UnderstandingtheResult</strong></h3><p>Thecalculationshowshowcalculusenablesustocapturethebehaviorofdynamicsystemsatspecificinstances.Theresultof0fortheinstantaneousvelocityat seconds, the instantaneous velocity of the ball is 0. This means that at this exact moment, the ball has reached its maximum height and its velocity is momentarily zero before it starts descending.</p><p></p><h3><strong>Understanding the Result</strong></h3><p>The calculation shows how calculus enables us to capture the behavior of dynamic systems at specific instances. The result of 0 for the instantaneous velocity at t = 2secondsillustratesakeypointinthemotionoftheball:itspeakheight.Thisdemonstrateshowtheconceptoflimitsandinstantaneousratesofchangeisnotonlytheoreticalbutalsohaspracticalapplicationsinunderstandingrealworldphenomena.</p><h2id="practicequestions"><strong>PracticeQuestions</strong></h2><h3><strong>Question1</strong></h3><p>Aparticlemovesalongastraightlinewithitspositionattime</p><p>givenbythefunction seconds illustrates a key point in the motion of the ball: its peak height. This demonstrates how the concept of limits and instantaneous rates of change is not only theoretical but also has practical applications in understanding real-world phenomena.</p><h2 id="practice-questions"><strong>Practice Questions</strong></h2><h3><strong>Question 1</strong></h3><p>A particle moves along a straight line with its position at time </p><p> given by the function s(t) = t^3 - 6t^2 + 9t - 4,where, where sismeasuredinmetersand is measured in meters and tinseconds.Calculatetheinstantaneousvelocityoftheparticleat in seconds. Calculate the instantaneous velocity of the particle at t = 2seconds.</p><h3><strong>Question2</strong></h3><p>Thetemperature, seconds.</p><h3><strong>Question 2</strong></h3><p>The temperature, T,indegreesCelsius,ofasubstanceattime, in degrees Celsius, of a substance at time thoursisgivenby hours is given by T(t) = 4t^2 - 16t + 25.Findtherateoftemperaturechangewithrespecttotimeat. Find the rate of temperature change with respect to time at t = 3hours.</p><h3><strong>Question3</strong></h3><p>Giventhefunction hours.</p><h3><strong>Question 3</strong></h3><p>Given the function f(x) = \sqrt{x},determinetheinstantaneousrateofchangeat, determine the instantaneous rate of change at x = 4.</p><p></p><h2id="solutionstopracticequestions"><strong>SolutionstoPracticeQuestions</strong></h2><h3><strong>SolutiontoQuestion1</strong></h3><p><strong>Given</strong>:.</p><p></p><h2 id="solutions-to-practice-questions"><strong>Solutions to Practice Questions</strong></h2><h3><strong>Solution to Question 1</strong></h3><p><strong>Given</strong>: s(t) = t^3 - 6t^2 + 9t - 4</p><p><strong>Find</strong>:Instantaneousvelocityat</p><p><strong>Find</strong>: Instantaneous velocity at t = 2seconds.</p><p></p><ul><li><strong>Solution</strong>:</li></ul><p></p> seconds.</p><p></p><ul><li><strong>Solution</strong>:</li></ul><p></p>v(t) = \lim_{h \to 0} \frac{s(2+h) - s(2)}{h}<p>Substituting<p>Substituting s(t):</p>:</p>\begin{aligned} &= \lim{h \to 0} \frac{(2+h)^3 - 6(2+h)^2 + 9(2+h) - 4 - (8 - 24 + 18 - 4)}{h} \\ &= \lim{h \to 0} \frac{8 + 12h + 6h^2 + h^3 - 24 - 24h - 6h^2 + 18 + 9h - 4 + 8}{h} \\ &= \lim{h \to 0} \frac{12h + h^3 + 9h}{h} \\ &= \lim{h \to 0} (12 + h^2 + 9) \\ &= 21 \end{aligned}<p></p><p>Theinstantaneousvelocityoftheparticleat<p></p><p>The instantaneous velocity of the particle at t = 2secondsis21meterspersecond.</p><p></p><h3><strong>SolutiontoQuestion2</strong></h3><p><strong>Given</strong>: seconds is 21 meters per second.</p><p></p><h3><strong>Solution to Question 2</strong></h3><p><strong>Given</strong>: T(t) = 4t^2 - 16t + 25</p><p><strong>Find</strong>:Rateoftemperaturechangeat</p><p><strong>Find</strong>: Rate of temperature change at t = 3hours.</p><p></p><ul><li><strong>Solution</strong>:</li></ul><p></p> hours.</p><p></p><ul><li><strong>Solution</strong>:</li></ul><p></p>\begin{aligned} T'(t) &= \lim{h \to 0} \frac{T(3+h) - T(3)}{h} \\ &= \lim{h \to 0} \frac{4(3+h)^2 - 16(3+h) + 25 - (36 - 48 + 25)}{h} \\ &= \lim{h \to 0} \frac{36 + 24h + 4h^2 - 48 - 16h + 25 + 1}{h} \\ &= \lim{h \to 0} \frac{24h + 4h^2 - 16h}{h} \\ &= \lim_{h \to 0} (8 + 4h) \\ &= 8 \end{aligned} <p></p><p>Therateoftemperaturechangeat<p></p><p>The rate of temperature change at t = 3hoursis8degreesCelsiusperhour.</p><h3><strong>SolutiontoQuestion3</strong></h3><p><strong>Given</strong>: hours is 8 degrees Celsius per hour.</p><h3><strong>Solution to Question 3</strong></h3><p><strong>Given</strong>: f(x) = \sqrt{x}</p><p><strong>Find</strong>:Instantaneousrateofchangeat</p><p><strong>Find</strong>: Instantaneous rate of change at x = 4.</p><p></p><ul><li><strong>Solution</strong>:</li></ul><p></p>.</p><p></p><ul><li><strong>Solution</strong>:</li></ul><p></p>f'(x) = \lim{h \to 0} \frac{f(4+h) - f(4)}{h} = \lim{h \to 0} \frac{\sqrt{4+h} - \sqrt{4}}{h}<p></p><p>Applyingtheconjugatemultiplicationtechniquetorationalizethenumerator:</p><p></p><p></p><p>Applying the conjugate multiplication technique to rationalize the numerator:</p><p></p>\begin{aligned} &= \lim{h \to 0} \frac{\sqrt{4+h} - 2}{h} \cdot \frac{\sqrt{4+h} + 2}{\sqrt{4+h} + 2} \\ &= \lim{h \to 0} \frac{(4+h) - 4}{h(\sqrt{4+h} + 2)} \\ &= \lim{h \to 0} \frac{h}{h(\sqrt{4+h} + 2)} \\ &= \lim{h \to 0} \frac{1}{\sqrt{4+h} + 2} \\ &= \frac{1}{\sqrt{4} + 2} \\ &= \frac{1}{2 + 2} \\ &= \frac{1}{4} \end{aligned}<p></p><p>Theinstantaneousrateofchangeofthefunction<p></p><p>The instantaneous rate of change of the function f(x) = \sqrt{x}at(x=4)is at (x = 4) is \frac{1}{4}.Thisresultrepresentstheslopeofthetangentlinetothecurve. This result represents the slope of the tangent line to the curve y = \sqrt{x}atthepoint at the point x = 4$, indicating how rapidly the function is changing at that specific point.

Hire a tutor

Please fill out the form and we'll find a tutor for you.

1/2
Your details
Alternatively contact us via
WhatsApp, Phone Call, or Email