Understanding the instantaneous rate of change via limits is essential for analyzing movements or changes that occur precisely at a given moment. This concept forms the backbone of calculus, offering a mathematical lens to study changes that happen instantaneously. By utilizing limits, calculus transcends the average rate of change, providing insights into the exact rate at which a variable changes at any given point.
Image courtesy of Geeks for Geeks
The Concept of Instantaneous Rate of Change
The instantaneous rate of change at a point on a function is akin to the concept of speed at an instant for a moving object. It is the rate at which a function's output value changes with respect to a change in the input value, precisely at a specific point.
Definition: The instantaneous rate of change of a function f(x) at a point c is defined as:
limh→0hf(c+h)−f(c)This limit, when exists, represents the slope of the tangent line to the curve y=f(x) at the point (c,f(c)).
Understanding Through Examples
Let's delve into examples to thoroughly grasp the concept and computational methods of determining the instantaneous rate of change.
Example 1: Linear Function
Consider the linear function f(x)=2x+3. Find the instantaneous rate of change at x=1.
$\begin{aligned} \lim{h \to 0} \frac{f(1+h) - f(1)}{h} &= \lim{h \to 0} \frac{(2(1+h) + 3) - (2\cdot1 + 3)}{h} \\
&= \lim{h \to 0} \frac{2 + 2h + 3 - 5}{h} \\
&= \lim{h \to 0} \frac{2h}{h} \\
&= \lim_{h \to 0} 2 \\
&= 2 \end{aligned}
<p></p><p>Theinstantaneousrateofchangeoff(x)
atx = 1
is2,whichisconsistentacrossallpointsforalinearfunction,indicatingaconstantslope.</p><p></p><h3><strong>Example2:QuadraticFunction</strong></h3><p>Considerthefunctionf(x) = x^2 - 4x + 4
.Calculatetheinstantaneousrateofchangeatx = 2
.</p><p></p><ul><li><strong>Solution</strong>:</li></ul><p></p>\begin{aligned} \lim{h \to 0} \frac{f(2+h) - f(2)}{h} &= \lim{h \to 0} \frac{((2+h)^2 - 4(2+h) + 4) - (2^2 - 4\cdot2 + 4)}{h} \\
&= \lim{h \to 0} \frac{(4 + 4h + h^2 - 8 - 4h + 4) - 0}{h} \\
&= \lim{h \to 0} \frac{4h + h^2}{h} \\
&= \lim_{h \to 0} (4 + h) \\
&= 4 \end{aligned}
<p></p><p>Here,theinstantaneousrateofchangeatx = 2
is4,illustratinghowtheslopeofthetangentlinetothecurveatthatpointcanbedeterminedusinglimits.</p><p></p><h3><strong>Example3:CubicFunction</strong></h3><p>Findtheinstantaneousrateofchangeoff(x) = x^3
atx = 1
.</p><ul><li><strong>Solution</strong>:</li></ul><p></p>\begin{aligned} \lim{h \to 0} \frac{f(1+h) - f(1)}{h} &= \lim{h \to 0} \frac{(1+h)^3 - 1^3}{h} \\
&= \lim{h \to 0} \frac{1 + 3h + 3h^2 + h^3 - 1}{h} \\
&= \lim{h \to 0} \frac{3h + 3h^2 + h^3}{h} \\
&= \lim_{h \to 0} (3 + 3h + h^2) \\
&= 3 \end{aligned}
<p></p><p>Forf(x) = x^3
atx = 1
,theinstantaneousrateofchangeis3,whichvariesatdifferentpointsonthecurve,reflectingthechangingslopeofthetangentaswemovealongthefunction.</p><h2id="applying−the−concept−to−real−world−problems"><strong>ApplyingtheConcepttoReal−WorldProblems</strong></h2><p>Consideraballthrownupwardswithitsheightabovethegroundgivenbythefunctions(t) = -16t^2 + 64t
,wheres
istheheightinfeet,andt
isthetimeinseconds.Calculatetheinstantaneousvelocityoftheballatt = 2
seconds.</p><h3><strong>Real−WorldExample:InstantaneousVelocity</strong></h3><p>Theinstantaneousvelocityofanobjectatagiventimeistheinstantaneousrateofchangeofitspositionwithrespecttotime.</p><ul><li><strong>Given</strong>:s(t) = -16t^2 + 64t
</li><li><strong>Find</strong>:Instantaneousvelocityatt = 2
seconds.</li><li><strong>Solution</strong>:</li></ul><p></p>\begin{aligned} v(t) &= \lim{h \to 0} \frac{s(2+h) - s(2)}{h} \\
&= \lim{h \to 0} \frac{-16(2+h)^2 + 64(2+h) - (-16\cdot2^2 + 64\cdot2)}{h} \\ &= \lim{h \to 0} \frac{-16(4 + 4h + h^2) + 64 + 64h - (-64 + 128)}{h} \\
&= \lim{h \to 0} \frac{-64 - 64h - 16h^2 + 64 + 64h - 64 + 128}{h} \\
&= \lim{h \to 0} \frac{-16h^2}{h} \\
&= \lim{h \to 0} -16h \\
&= 0 \end{aligned}
<p></p><p>Att = 2
seconds,theinstantaneousvelocityoftheballis0.Thismeansthatatthisexactmoment,theballhasreacheditsmaximumheightanditsvelocityismomentarilyzerobeforeitstartsdescending.</p><p></p><h3><strong>UnderstandingtheResult</strong></h3><p>Thecalculationshowshowcalculusenablesustocapturethebehaviorofdynamicsystemsatspecificinstances.Theresultof0fortheinstantaneousvelocityatt = 2
secondsillustratesakeypointinthemotionoftheball:itspeakheight.Thisdemonstrateshowtheconceptoflimitsandinstantaneousratesofchangeisnotonlytheoreticalbutalsohaspracticalapplicationsinunderstandingreal−worldphenomena.</p><h2id="practice−questions"><strong>PracticeQuestions</strong></h2><h3><strong>Question1</strong></h3><p>Aparticlemovesalongastraightlinewithitspositionattime</p><p>givenbythefunctions(t) = t^3 - 6t^2 + 9t - 4
,wheres
ismeasuredinmetersandt
inseconds.Calculatetheinstantaneousvelocityoftheparticleatt = 2
seconds.</p><h3><strong>Question2</strong></h3><p>Thetemperature,T
,indegreesCelsius,ofasubstanceattimet
hoursisgivenbyT(t) = 4t^2 - 16t + 25
.Findtherateoftemperaturechangewithrespecttotimeatt = 3
hours.</p><h3><strong>Question3</strong></h3><p>Giventhefunctionf(x) = \sqrt{x}
,determinetheinstantaneousrateofchangeatx = 4
.</p><p></p><h2id="solutions−to−practice−questions"><strong>SolutionstoPracticeQuestions</strong></h2><h3><strong>SolutiontoQuestion1</strong></h3><p><strong>Given</strong>:s(t) = t^3 - 6t^2 + 9t - 4
</p><p><strong>Find</strong>:Instantaneousvelocityatt = 2
seconds.</p><p></p><ul><li><strong>Solution</strong>:</li></ul><p></p>v(t) = \lim_{h \to 0} \frac{s(2+h) - s(2)}{h}
<p>Substitutings(t)
:</p>\begin{aligned} &= \lim{h \to 0} \frac{(2+h)^3 - 6(2+h)^2 + 9(2+h) - 4 - (8 - 24 + 18 - 4)}{h} \\
&= \lim{h \to 0} \frac{8 + 12h + 6h^2 + h^3 - 24 - 24h - 6h^2 + 18 + 9h - 4 + 8}{h} \\
&= \lim{h \to 0} \frac{12h + h^3 + 9h}{h} \\
&= \lim{h \to 0} (12 + h^2 + 9) \\
&= 21 \end{aligned}
<p></p><p>Theinstantaneousvelocityoftheparticleatt = 2
secondsis21meterspersecond.</p><p></p><h3><strong>SolutiontoQuestion2</strong></h3><p><strong>Given</strong>:T(t) = 4t^2 - 16t + 25
</p><p><strong>Find</strong>:Rateoftemperaturechangeatt = 3
hours.</p><p></p><ul><li><strong>Solution</strong>:</li></ul><p></p>\begin{aligned} T'(t) &= \lim{h \to 0} \frac{T(3+h) - T(3)}{h} \\
&= \lim{h \to 0} \frac{4(3+h)^2 - 16(3+h) + 25 - (36 - 48 + 25)}{h} \\
&= \lim{h \to 0} \frac{36 + 24h + 4h^2 - 48 - 16h + 25 + 1}{h} \\
&= \lim{h \to 0} \frac{24h + 4h^2 - 16h}{h} \\
&= \lim_{h \to 0} (8 + 4h) \\
&= 8 \end{aligned}
<p></p><p>Therateoftemperaturechangeatt = 3
hoursis8degreesCelsiusperhour.</p><h3><strong>SolutiontoQuestion3</strong></h3><p><strong>Given</strong>:f(x) = \sqrt{x}
</p><p><strong>Find</strong>:Instantaneousrateofchangeatx = 4
.</p><p></p><ul><li><strong>Solution</strong>:</li></ul><p></p>f'(x) = \lim{h \to 0} \frac{f(4+h) - f(4)}{h} = \lim{h \to 0} \frac{\sqrt{4+h} - \sqrt{4}}{h}
<p></p><p>Applyingtheconjugatemultiplicationtechniquetorationalizethenumerator:</p><p></p>\begin{aligned} &= \lim{h \to 0} \frac{\sqrt{4+h} - 2}{h} \cdot \frac{\sqrt{4+h} + 2}{\sqrt{4+h} + 2} \\
&= \lim{h \to 0} \frac{(4+h) - 4}{h(\sqrt{4+h} + 2)} \\
&= \lim{h \to 0} \frac{h}{h(\sqrt{4+h} + 2)} \\
&= \lim{h \to 0} \frac{1}{\sqrt{4+h} + 2} \\
&= \frac{1}{\sqrt{4} + 2} \\
&= \frac{1}{2 + 2} \\
&= \frac{1}{4} \end{aligned}
<p></p><p>Theinstantaneousrateofchangeofthefunctionf(x) = \sqrt{x}
at(x=4)is\frac{1}{4}
.Thisresultrepresentstheslopeofthetangentlinetothecurvey = \sqrt{x}
atthepointx = 4$, indicating how rapidly the function is changing at that specific point.