The concept of the Average Rate of Change (ARC) is foundational in calculus, enabling us to understand how one quantity changes in relation to another over a given interval. This calculation divides the change in one variable by the change in another, offering a quantifiable measure of change between two points. Through calculus, the ARC concept evolves, especially as we approach intervals where the change in the independent variable tends toward zero, presenting challenges in traditional calculations.
Understanding Average Rate of Change
Definition: The ARC between two points on a function y=f(x) is defined as:
ARC=ΔxΔy=x2−x1f(x2)−f(x1)where Δy is the change in the function's value, and Δx is the change in the independent variable's value.
Importance: This concept is crucial for understanding how the output of a function changes relative to changes in the input, providing a basis for more complex calculus concepts, including the derivative.
Transitioning to Calculus
- Limits and the ARC: As the interval Δx approaches zero, we encounter the concept of a limit. Calculus allows us to explore what happens to the ARC as x2 approaches x1, moving towards an instantaneous rate of change.
- Example of applying limits to ARC:
limΔx→0Δxf(x1+Δx)−f(x1)Calculating Average Rate of Change: Examples
Example 1: Linear Function
Consider the function f(x)=2x+3 over the interval [1, 4].
- Step 1: Identify x1 and x2, x1=1, x2=4.
- Step 2: Calculate f(x1) and f(x2), f(1)=5, f(4)=11.
- Step 3: Compute ARC,
$\begin{gathered} &&&&& ARC = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \\
&&&&& = \frac{11 - 5}{4 - 1} \\
&&&&& = \frac{6}{3} \\
&&&&& = 2 \end{gathered}
<p></p><ul><li><strong>Result</strong>:TheARCoff(x)
over[1,4]is2.</li></ul><p></p><ul><li><strong>GraphicalRepresentation</strong></li></ul><imgsrc="https://tutorchase−production.s3.eu−west−2.amazonaws.com/e7afb681−f43c−448e−92c5−da423c8af9f8−file.png"alt="LinearFunctionGraph"style="width:500px;height:386px"width="500"height="386"><p></p><h3><strong>Example2:QuadraticFunction</strong></h3><p>Considerf(x) = x^2
overtheinterval[2,5].</p><ul><li><strong>Step1</strong>:Identifypoints,x_1 = 2
,x_2 = 5
.</li><li><strong>Step2</strong>:Evaluatef(x_1)
andf(x_2)
,f(2) = 4
,f(5) = 25
.</li><li><strong>Step3</strong>:CalculateARC,</li></ul><p></p>\begin{gathered}
&&&&& ARC = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \\
&&&&& = \frac{25 - 4}{5 - 2} \\
&&&&& = \frac{21}{3} \\
&&&&& = 7
\end{gathered}
<p></p><ul><li><strong>Result</strong>:TheARCoff(x)
over[2,5]is7.</li></ul><p></p><ul><li><strong>GraphicalRepresentation:</strong></li></ul><imgsrc="https://tutorchase−production.s3.eu−west−2.amazonaws.com/585fefb1−8aea−41c6−a24c−0f74789a5f0e−file.png"alt="QuadraticFunctionGraph"style="width:500px;height:398px"width="500"height="398"><p><strong><br></strong></p><h3><strong>Example3:UsingLimitstoExploreARC′sApproachtoZero</strong></h3><p>Considerf(x) = x^2
as\Delta x
approaches0from[3,3 + \Delta x
].</p><p></p><ul><li><strong>Step1</strong>:ExpressARCasalimit,</li></ul><p></p>\begin{aligned}
&& & \lim{\Delta x \rightarrow 0} \frac{f(3 + \Delta x) - f(3)}{\Delta x} \\
&& = & \lim{\Delta x \rightarrow 0} \frac{(3 + \Delta x)^2 - 9}{\Delta x} \\
&& = & \lim{\Delta x \rightarrow 0} \frac{9 + 6\Delta x + \Delta x^2 - 9}{\Delta x} \\
&& = & \lim{\Delta x \rightarrow 0} \frac{6\Delta x + \Delta x^2}{\Delta x} \\
&& = & \lim_{\Delta x \rightarrow 0} 6 + \Delta x \\
&& = & 6 \end{aligned}
<ul><li><strong>Result</strong>:As\Delta x
approaches0,theAverageRateofChangeoff(x) = x^2
atx = 3
approaches6.Thisreflectstheinstantaneousrateofchange,orderivative,off(x)
atx = 3
.</li></ul><p></p><ul><li><strong>GraphicalRepresentation:</strong></li></ul><imgsrc="https://tutorchase−production.s3.eu−west−2.amazonaws.com/059dfc4b−4797−4326−a37f−ad0162249e41−file.png"alt="UsingLimitstoExploreARC′sApproachtoZero"style="width:500px;height:396px"width="500"height="396"><p></p><h3><strong>Example4:Real−WorldApplication</strong></h3><p>Consideravehicle′sdistancetraveled,describedbyf(t) = 4t^2 + 2t
wheref(t)
isdistanceinmetersand(t)istimeinseconds,overtheinterval[1,4]seconds.</p><p></p><ul><li><strong>Step1</strong>:Identifyt_1 = 1
,t_2 = 4
.</li><li><strong>Step2</strong>:Calculatef(t_1)
andf(t_2)
,f(1) = 6
,f(4) = 72
.</li><li><strong>Step3</strong>:ComputeARC,</li></ul><p></p> \begin{aligned} && ARC = \frac{f(t_2) - f(t_1)}{t_2 - t_1} \\
&& = \frac{72 - 6}{4 - 1} \\
&& = \frac{66}{3} \\
&& = 22 \end{aligned}
<p></p><ul><li><strong>Result</strong>:Thevehicle′saveragespeedovertheinterval[1,4]secondsis22meterspersecond.</li></ul><p></p><h3><strong>Example5:ChangingRates</strong></h3><p>Foraballoonbeinginflated,thevolumeV
incubiccentimetersisgivenbyV(t) = \frac{4}{3}\pi(6t)^3
wheret
istimeinminutes.CalculatetheARCofvolumechangebetween2and5minutes.</p><ul><li><strong>Step1</strong>:Identifyt_1 = 2
,t_2 = 5
.</li><li><strong>Step2</strong>:CalculateV(t_1)
andV(t_2)
,</li></ul><p></p>\begin{aligned} &&&&& V(2) & = \frac{4}{3}\pi(6 \cdot 2)^3, \\
&&&&& V(5) & = \frac{4}{3}\pi(6 \cdot 5)^3. \end{aligned}
<p></p><ul><li><strong>Step3</strong>:ComputeARC,</li></ul><p></p>\begin{aligned} ARC & = \frac{V(t_2) - V(t_1)}{t_2 - t_1} \\
& = \frac{\frac{4}{3}\pi(6 \cdot 5)^3 - \frac{4}{3}\pi(6 \cdot 2)^3}{5 - 2} \\
& = \frac{4}{3}\pi \left( \frac{(6 \cdot 5)^3 - (6 \cdot 2)^3}{3} \right) \\
& = 468\pi \end{aligned}
<p></p><ul><li><strong>Result</strong>:Theaveragerateofvolumechangebetween2and5minutesis468\pi
cubiccentimetersperminute,illustratinghowvolumesofthree−dimensionalshapescanchangeovertime.</li></ul><h2id="practice−questions"><strong>PracticeQuestions</strong></h2><h3><strong>Question1</strong></h3><p>Giventhefunctionf(x) = 3x^2 - 2x + 5
,calculatetheaveragerateofchangefromx = 1
tox = 4
.</p><h3><strong>Question2</strong></h3><p>Asphericalballoonisbeinginflatedsothatitsvolumeatanytimet
insecondsisgivenbyV(t) = \frac{4}{3}\pi t^3
.Calculatetheaveragerateofchangeoftheballoon′svolumefromt = 2
secondstot = 5
seconds.</p><h3><strong>Question3</strong></h3><p>Forthefunctiong(x) = \ln(x)
,computetheaveragerateofchangebetweenx = 1
andx = e
,wheree
isthebaseofnaturallogarithms.</p><p></p><h2id="solutions−to−practice−questions"><strong>SolutionstoPracticeQuestions</strong></h2><h3><strong>SolutiontoQuestion1</strong></h3><p><strong>1.Identifythefunctionandpoints</strong>:f(x) = 3x^2 - 2x + 5, x_1 = 1, x_2 = 4
.</p><p><strong>2.Calculate</strong>f(x_1)
<strong>and</strong>f(x_2)
:</p><p></p>f(1) = 3(1)^2 - 2(1) + 5 = 6, \\
f(4) = 3(4)^2 - 2(4) + 5 = 41.
<p></p><p><strong>3.Computetheaveragerateofchange</strong>:</p><p></p>\begin{aligned} ARC &= \frac{f(x_2) - f(x_1)}{x_2 - x_1} \\
&= \frac{41 - 6}{4 - 1} \\
&= \frac{35}{3} \\
&= 11\frac{2}{3}. \end{aligned}
<p></p><p><strong>4.Result</strong>:Theaveragerateofchangefromx = 1
tox = 4
is11\frac{2}{3}
.</p><p></p><h3><strong>SolutiontoQuestion2</strong></h3><p><strong>1.Givenvolumefunction</strong>:V(t) = \frac{4}{3}\pi t^3
,witht_1 = 2
andt_2 = 5
.</p><p><strong>2.Find</strong>V(t_1)
<strong>and</strong>V(t_2)
:</p><p></p>V(2) = \frac{4}{3}\pi (2)^3 = \frac{32}{3}\pi, \\
V(5) = \frac{4}{3}\pi (5)^3 = \frac{500}{3}\pi.
<p></p><p><strong>3.CalculateARC</strong>:</p><p></p>\begin{aligned} ARC &= \frac{V(t_2) - V(t_1)}{t_2 - t_1} \\
&= \frac{\frac{500}{3}\pi - \frac{32}{3}\pi}{5 - 2} \\
&= \frac{468\pi}{3} \\
&= 156\pi. \end{aligned}
<p></p><p><strong>4.Result</strong>:Theaveragerateofchangeofthevolumefromt = 2
tot = 5
secondsis156\pi
cubicunitspersecond.</p><p></p><h3><strong>SolutiontoQuestion3</strong></h3><p><strong>1.Identifythefunctionandinterval</strong>:g(x) = \ln(x)
,fromx = 1
tox = e
.</p><p><strong>2.Calculate</strong>g(x_1)
<strong>and</strong>g(x_2)
:</p><p></p>g(1) = \ln(1) = 0, \\
g(e) = \ln(e) = 1.
<p></p><p><strong>3.ComputetheARC</strong>:</p><p></p>\begin{aligned} ARC &= \frac{g(x_2) - g(x_1)}{x_2 - x_1} \\
&= \frac{1 - 0}{e - 1} \\
&= \frac{1}{e - 1}. \end{aligned}
<p></p><p><strong>4.Result</strong>:Theaveragerateofchangeofg(x)
betweenx = 1
andx = e
is\frac{1}{e - 1}$.